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Abstract

Based on Reddy's third-order theory, the ®rst-order theory and the classical theory, exact explicit eigenvalues are

found for compression buckling, thermal buckling and vibration of laminated plates via analogy with membrane
vibration. These results apply to symmetrically laminated composite plates with transversely isotropic laminae and
simply supported polygonal edges. Comprehensive consideration of a Winkler±Pasternak elastic foundation, a
hydrostatic inplane force, an initial temperature increment and rotary inertias is incorporated. Bridged by the

vibrating membrane, exact correspondences are readily established between any pairs of buckling and vibration
eigenvalues associated with di�erent theories. Positive de®niteness of the critical hydrostatic pressure at buckling,
the thermobukling temperature increment and, in the range of either tension loading or compression loading prior

to occurrence of buckling, the natural vibration frequency is proved. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Equivalent single-layer theories (Noor and Burton, 1989; Reddy and Robbins Jr, 1994; Reddy, 1997)
treat a heterogeneous laminated plate as a statistically equivalent single layer, possibly having
complicated constitutive behavior. Examples are the classical theory and the ®rst-order shear
deformation theory, which are based on linear distribution of the inplane displacements in the thickness
direction, and the higher-order theory (Reddy, 1984) based on a nonlinear distribution of the inplane
displacements in the thickness direction. The advantage of the equivalent single-layer theories by
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introducing a global displacement approximation in the thickness direction is that only 3 or 5
generalized displacement parameters are involved in the resulting equations and the order of the
governing equations is independent of the total number of layers. Although the distributions of the
stresses and displacements through the thickness obtained by these theories are not so accurate because
transverse stresses do not satisfy continuity at layer interfaces, the global response characteristics
predicted by shear deformation theories are quite accurate. The governing equations of the shear
deformation theories are complicated, however, compared with the classical laminated plate theory.

This paper addresses the buckling and vibration problems of symmetrically laminated plates, with
special emphasis on seeking correspondences between eigenvalues derived using Reddy's higher-order
theory, the ®rst-order theory and the classical theory. A comprehensive study presented on the issue
provides exact explicit relationships via the simple solution of the membrane vibration. These
correspondences apply to simply supported prestressed plates resting on a Winkler±Pasternak elastic
foundation. From these exact correspondences established in the paper one can simply ®nd exact
buckling and vibration eigenvalues of polygonal laminated plates by knowing any one of these, e.g. in
terms of plenty of membrane and classical plate results which can be found in any relevant books. From
a technical viewpoint, this also bypasses much more complicated calculations using shear deformation
laminated plate theories, instead, using relatively simple theories.

Although transversely isotropic laminae are only involved in the relationships, such composite
materials have been found to have wide applications to missiles and re-entry vehicle structures (Librescu
and Stein, 1992). Because of their special thermomechanical properties suited for the thermal protection
of aerospace vehicles and their high ¯exibility in transverse shear, the present investigation appears to be
of both theoretical and practical importance.

2. Governing equations

Consider a laminated plate of thickness h, resting on a Winkler±Pasternak elastic foundation. The
plate consists of homogeneous, transversely isotropic laminae with uniform thickness, symmetrically
disposed both from a material and geometric properties standpoint about the midplane. Let fxi g �i � 1,
2, 3� be a Cartesian coordinate system, with the x3-axis normal to the plane of the plate. The
undeformed midplane is chosen as the reference plane de®ned by x3 = 0.

Throughout the following derivations, a comma followed by a subscript denotes a derivative with
respect to the corresponding spatial coordinate. The Einsteinian summation convention applies, unless
speci®ed otherwise, to repeated subscripts of tensor components, with Latain subscripts ranging from 1
to 3 while Greek subscripts are either 1 or 2.

Reddy's (1984) third-order theory for symmetric laminates is based on the following displacement
®eld:

va�xi; t� � ÿx3u3,a � gja, v3�xi; t� � u3, �1�
where the de¯ection u3 and the generalized displacement ja are independent of x3, and

g�x3� � x3

�
1ÿ 4x2

3

3h2

�
, ja � u3,a � ca: �2a,b�

The displacement ®eld (1) is essentially the same as the one in Reddy's (1984) original work in the case
of symmetric laminates, where the function ca was used through a substitution of eqn (2b).

For a laminated plate subjected to inplane hydrostatic pressure N per unit length exerted on edges,
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the steady-state linear governing equations with a time-harmonic dependence exp(iot� are expressed as

Mab,ab ÿNu3,aa ÿ ku3 � Gu3,aa � I0o2u3 ÿ I1o2u3,aa � I2o2ja,a � 0, �3�

Pab,b ÿ Ra ÿ I2o2u3,a � I3o2ja � 0, �4�
where o denotes an angular frequency, k and G denote the Winkler±Pasternak foundation parameters
(Kerr, 1964), and

Mab �
�h=2
ÿh=2

sabx3 dx3, Pab �
�h=2
ÿh=2

sabg dx3, Ra �
�h=2
ÿh=2

sa3g,3 dx3, �5�

sab � Haboreor, sa3 � 2Ea3o3eo3, eij � 1

2
�vi,j � vj,i �, �6�

�I0, I1, I2, I3 � �
�h=2
ÿh=2

r
�
1, x2

3, x3g, g
2
�

dx3: �7�

In eqns (3)±(6) as well as in what follows, the time-harmonic factor exp(iot ) has been omitted and each
physical quantity refers to its spatial part.

The components of the elasticity tensor associated with a transversely isotropic material, with its
isotropy plane being parallel to the reference plane, are expressed as (Librescu, 1975)

Habor � vE

1ÿ v2
dabdor � E

2�1� v�
ÿ
daodbr � dardbo

�
, Ea3o3 � m 0dao, �8�

where E and v denote Young's modulus and Poisson's ratio in the plane of isotropy, respectively, and m '
denotes the shear modulus in the plane normal to the isotropy plane.

Through eqns (6) and (8) and the spatial counterpart of eqns (1), eqn (5) may be written in an
alternative form as�

Mab

Pab

�
�
�ÿa1 � b1 a2 ÿ b2
ÿa2 � b2 a3 ÿ b3

��
u3,oo
jo,o

�
dab �

�ÿb1 b2
ÿb2 b3

�"
u3,ab

1
2

ÿ
ja,b � jb,a

� #, Ra � cja, �9a,b�

where

�a1, a2, a3 � �
�h=2
ÿh=2

�
x2
3, x3g, g

2
� E

1ÿ v2
dx3,

�b1, b2, b3 � �
�h=2
ÿh=2

�
x2
3, x3g, g

2
� E

1� v
dx3,

c �
�h=2
ÿh=2

m 0�g,3�2 dx3: �10a±c�

With the expressions of eqn (9), the governing eqns (3) and (4) are then expressed in terms of three
displacement functions u3 and ja as
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ÿa1u3, aabb � a2ja,abb ÿNu3,aa ÿ ku3 � Gu3,aa � I0o2u3 ÿ I1o2u3,aa � I2o2ja,a � 0, �11�

ÿa2u3, abb � 1

2
b3ja,bb �

�
a3 ÿ 1

2
b3

�
jb,ba ÿ cja ÿ I2o2u3,a � I3o2ja � 0: �12�

Alternatively, the following matrix equation can be obtained through eqn (11) and di�erentiating eqn
(12) with respect to xa,

KX � 0, �13�
where X � �u3 ja,a�T, 0 � �0 0�T and K � �KIJ� is a 2 � 2 operator matrix in which its elements,
expressed in terms of two-dimensional Laplacian operator r2, are

K11
�r2� � ÿa1r4 ÿ

ÿ
Nÿ G� I1o2

�
r2 ÿ k� I0o2,

K12
�r2� � a2r2 � I2o2,

K21
�r2� � ÿa2r4 ÿ I2o2r2,

K22
�r2� � a3r2 ÿ c� I3o2: �14�

Furthermore, eliminating ja,a from eqn (13) gives

det
�
K�r2��u3 � ÿa22 ÿ a1a3

�ÿr2 � l1
�ÿ
r2 � l2

�ÿ
r2 � l3

�
u3 � 0, �15�

where lI �I � 1, 2, 3� are three roots of the cubic equation

det
�
K� ÿ l�

�
� K11� ÿ l�K22� ÿ l� ÿ K12� ÿ l�K21� ÿ l� � 0: �16�

Eqn (15) is the characteristic equation, from which the eigenvalues and associated eigenfunctions for
buckling and vibration problems of Reddy's third-order theory can be solved with given boundary
conditions.

3. Simply supported edges of polygonal plates

Assuming that a laminated plate is simply supported on its boundary, the boundary condition is
expressed as

u3 � 0, PNN � 0, jT � 0, MNN � 0, u3,T � 0, �17a±e�
where the upper case subscripts N and T denote the directions normal and tangential to the boundary,
respectively. No implicit summation applies to the repeated upper case subscripts.

For a polygonal laminated plate with rectilinear edges, eqn (17e) is identically satis®ed due to eqn
(17a), while eqns (17b, d) can be recast as, through eqns (19a) and (17a, c),

u3,NN � 0, jN,N � 0: �18�
Therefore, the condition of simply supported straight edges can be expressed as
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u3 � 0, r2u3 � 0, jT � 0, ja, a � 0: �19a±d�
As a consequence of eqns (13) and (19),

r4u3 � 0, r2ja, a � 0: �20a,b�
Note that eqns (20) are not independent restraint conditions.

4. Analogy between Reddy and membrane theories

In order to facilitate subsequent analysis, eqn (15) may be written in an alternative form asÿ
r2 � lI1

�
FI1 � 0, FI1 �

ÿ
a22 ÿ a1a3

�ÿ
r2 � lI2

�ÿ
r2 � lI3

�
u3, �21a,b�

where lI1 is one of the three roots of the cubic eqn (16), while lI2 and lI3 are the other two. No implicit
summation applies to the repeated subscripts in eqn (21a). In view of eqns (19a, b), (20a) and (21b), the
Helmholtz eqn (21a) is shown to be associated with such a boundary condition as

FI1 � 0: �22�
According to the properties of a cubic equation with real coe�cients, there exists at least a real
root of the cubic equation, while the other two are either real or complex conjugate. Taking lI1
as a real root, then the operator �r2� lI2 � �r2� lI3� must be real no matter whether lI2 and lI3 are
real or complex conjugate roots. For a practical physical system, only the real displacement function u3
is of interest. In view of eqn (21b), it can be concluded that FI1 is a real eigenfunction, related to a
physically reasonable u3. Therefore, the eigenvalue problem for Reddy's third-order laminated plate
theory is composed of eqn (21a) and the boundary condition (22), which is a boundary value problem
of Dirichlet type. This boundary value problem is analogous to a uniform membrane executing small
transverse vibration. Insofar as the case of three real roots is concerned, lI1 has not been speci®ed as a
particular root of the three real roots, thus the general case has been considered in the present analysis.

The eigenvalue of the membrane vibration problem is known as (Gladwell and Willms, 1995)

lM � rMo2
M

S
, �23�

with rM, S and oM being the mass density, constant tension and vibration frequency of the membrane,
respectively.

It is obvious that the eigenvalue l of the Dirichlet boundary value problem, eqns (21a) and (22), for
the Reddy plate theory must be the same as lM, i.e.

l � lM: �24�
Since l is a real root of the cubic eqn (16), substituting eqn (24) into (16) yields

det
�
K� ÿ lM �

� � Ao4 � Bo2 � C � 0, �25�
where

A � ÿI1I3 ÿ I22
�
lM � I0I3,
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B � �2a2I2 ÿ a1I3 ÿ a3I1 �l2M � �NI3 ÿ GI3 ÿ a3I0 ÿ cI1�lM ÿ �kI3 � cI0 �,

C � ÿa1a3 ÿ a22
�
l2M � �ca1 ÿNa3 � Ga3�l2M � �ka3 ÿNc� Gc�lM � kc: �26�

For the buckling problem using the Reddy plate theory, the critical hydrostatic pressure can be
obtained by setting o � 0 in eqn (25), i.e. C � 0, which gives

N cr � a1lM � G� k

lM

ÿ a22l
2
M

a3lM � c
: �27�

In particular, for a thermal buckling problem, the equivalent inplane thermal load is expressed as

NDT � gDT, g �
�h=2
ÿh=2

Ea
1ÿ v

dx3, �28�

where a and DT denote, respectively, the linear expansion coe�cient of the laminated plate and a
uniform temperature increment within it. Note that a is a function of the thickness coordinate.
Therefore, the critical thermobuckling temperature increment DT cr is expressed in terms of the
eigenvalue of membrane vibration as

DT cr � 1

g

"
a1lM � G� k

lM

ÿ a22l
2
M

a3lM � c

#
: �29�

For the free vibration problem using the Reddy laminated plate theory, the characteristic frequency of
a laminated plate subjected to an initial hydrostatic inplane stress resultant N is explicitly obtained from
eqn (25) as

o2 � ÿB2
���������������������
B2 ÿ 4AC
p

2A
: �30�

Note that the stress resultant N can also be an inplane thermal load due to an initial temperature
increment or the sum of both.

According to the work of Irschik (1985), there are three di�erent types of motion for the polygonal
simply supported plates. The ®rst two of these eigenmotions, called ¯exural and thickness-shear modes,
are independently generated by Dirichlet's boundary value problem, whereas the third mode, i.e.
thickness-twist mode, is due to Neumann's boundary value problem. The analogy of eqn (24) only
corresponds to the membrane with ®xed edges. Correspondingly, the eigenvectors associated with the
vibration frequencies given by eqn (30) exhibit ¯exural and thickness-shear modes.

5. The ®rst-order theory

While taking g�x3� � x3, it can be seen from eqn (1) that the displacement ®eld is essentially the one
for the ®rst-order plate theory (Reddy, 1997). In this case, a2 = a3 = a1 and I2 = I3 = I1 from eqns
(10a) and (7). As is well-recognized, the shear correction factor k should be involved in the ®rst-order
plate theory, i.e. the parameter c expressed in eqn (10c) is replaced by

cF � k
�h=2
ÿh=2

m 0 dx3: �31�
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The characteristic equation for the ®rst-order laminated plate theory is the same as the matrix eqn
(13), which if eliminating ja,a reduces to a quadratic equation with respect to the Laplacian operator H2,
i.e. the degenerated form from eqn (15) due to a2 = a3 = a1,

ÿa1�Nÿ Gÿ cF �
ÿ
r2 � l1

�ÿ
r2 � l2

�
u3 � 0: �32�

The boundary condition for simply supported edges is expressed as eqns (17a, c, d). The condition
MNN � 0 in eqn (17d) gives the relationship u3,NN ÿ jN,N � 0 which is di�erent from the case of Reddy's
third-order theory. However, after scrutiny of this condition with the help of eqn (13), it can be shown
that the boundary condition of the ®rst-order theory for simply supported rectilinear edges is the same
as eqn (19) while N 6� G� cF: In the case of N � G� cF, eqn (32) is further degenerated to a linear
equation with respect to the Laplacian operator r2: Therefore, only the boundary condition (19a) is
needed, though the boundary condition (19b) may also be further shown to hold for the particular case.

Based on the above, the results can be given as follows:

1. the critical hydrostatic inplane pressure is

Ncr
F � a1lM � G� k

lM

ÿ a21l
2
M

a1lM � cF

; �33�

2. the critical thermobuckling temperature increment is

DTcr
F �

1

g

"
a1lM � G� k

lM

ÿ a21l
2
M

a1lM � cF

#
; �34�

3. the free vibration frequency of prestressed laminated plates is expressed in the same form as eqn (30)
where, instead of eqn (26),

A � I0I1,

B � �NI1 ÿ GI1 ÿ a1I0 ÿ cFI1�lM ÿ �kI1 � cFI0 �,

C � �cFa1 ÿNa1 � Ga1�l2M � �ka1 ÿNcF � GcF �lM � kcF: �35�

6. The classical theory

In the case of the classical Kirchho� theory for laminated plates (Reddy, 1997), eqns (1) exactly
represent the corresponding displacement ®eld if taking g(x3) = 0, which yields a2 = a3 = 0 and I2 =
I3 = 0 from eqns (10a) and (7). The characteristic equation is [K11(H

2)]u3 = 0, associated with the
boundary condition shown in eqns (19a, b). Similarly, therefore, the eigenvalue equation is

K11� ÿ lM� � 0, �36�
from which the results can be given as follows:

1. the critical hydrostatic inplane pressure at buckling is
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Ncr
K � a1lM � G� k

lM

; �37�

2. the critical thermobuckling temperature increment is

DTcr
K �

1

l

�
a1lM � G� k

lM

�
; �38�

3. the free vibration frequency is

o2
K �

a1l
2
M ÿ �Nÿ G�lM � k

I1lM � I0
: �39�

7. Discussion on correspondences

In view of eqns (27), (33) and (37), the exact critical buckling values of the inplane hydrostatic
pressure have been obtained via the membrane vibration frequency. Therefore, exact correspondences
between the buckling pressures of Reddy's third-order theory, the ®rst-order theory and the classical
theory for symmetrically laminated polygonal plates with transversely isotropic laminae and simply
supported rectilinear edges can be explicitly established upon substitution of lM between these
expressions. Similarly, exact relationships can also be given between the thermobuckling temperature
increments shown in eqns (29), (34) and (38). The same is true for the vibration frequencies expressed in
eqns (30) and (39) associated with di�erent theories. Exact explicit correspondences between buckling
and vibration eigenvalues can also be found in the same way. Moreover, it is easy to provide any pairs
of exact explicit relationship upon substitution of lM, although these correspondences are not explicitly
shown herein.

When rotary inertias are omitted, i.e. I1 = I2 = I3 = 0, eqn (25) furnishes the natural frequency of
Reddy's theory neglecting rotary inertias

ô2 �
ÿ
a1a3 ÿ a22

�
l3M � �ca1 ÿNa3 � Ga3�l2M � �ka3 ÿNc� Gc�lM � kc

I0�a3lM � c� �40�

This expression is also valid for the ®rst-order theory by taking a2 = a3 = a1, c = cF and for the
classical theory by taking a2 = a3 = 0, respectively, i.e.

ô2
F �
�cF ÿN� G�a1l2M � �ka1 ÿNcF � GcF �lM � kcF

I0�a1lM � cF � , �41�

ô2
K �

a1l
2
M ÿ �Nÿ G�lM � k

I0
: �42�

Note that eqn (40) and (41) give only one value of the natural frequency, rather than two values in eqns
(30) for the Reddy and ®rst-order laminated plate theories. This implies that an additional frequency
expressed in eqn (30) results from incorporating the rotary inertia. Insofar as ¯exural vibration is
concerned, only the lower value in eqn (30) is related as normally rotational vibration within plates has
a higher frequency than that of transverse vibration for plate packages.
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Comparing eqns (40)±(42), the natural frequencies corresponding to Reddy's third-order theory, the
®rst-order theory and the classical Kirchho� theory for laminated plates excluding the e�ect of rotary
inertias are connected with each other as follows:

ô2 � a22l
3
M

I0�a3lM � c� � ô2
F �

a21l
3
M

I0�a1lM � cF � � ô2
K: �43�

Similarly, by comparing eqns (27), (33) and (37), the connection of the critical buckling hydrostatic
pressures associated with di�erent laminated plate theories is

N cr � a22l
2
M

a3lM � c
� Ncr

F �
a21l

2
M

a1lM � cF

� Ncr
K : �44�

By comparing eqns (29), (34) and (38), the critical thermobuckling temperature increments associated
with di�erent laminated plate theories are connected by

DT cr � a22l
2
M

g�a3lM � c� � DTcr
F �

a21l
2
M

g�a1lM � cF � � DTcr
K : �45�

Therefore, the di�erences of the natural frequencies, the buckling loads and the thermobuckling
temperature increments between di�erent theories are clearly shown in eqns (43)±(45). It is also clear
from these equations that the classical Kirchho� laminated plate theory always overpredicts the
eigenvalues, compared with Reddy's theory and the ®rst-order theory.

In the special case of simply-supported polygonal single-layer isotropic plates, some available results,
i.e. the relationships regarding critical hydrostatic inplane pressures at buckling and the natural
frequencies (Conway and Farnham, 1965; Roberts, 1971; Irschik, 1985; Wang and Reddy, 1997; Wang
et al., 1997) associated with di�erent single-layer isotropic plate theories can be recovered from the
present results.

In the work of Cheng et al. (1993a, b, 1994), it has been shown that the dimensionless governing
equations and boundary conditions have the same form for the sandwich plate theory (Reissner, 1948,
1950) as for the ®rst-order shear deformation theory (Reissner, 1945, 1985; Mindlin, 1951) for single-
layer plates. Therefore, the correspondences with the Reissner±Mindlin single-layer plate theory also
apply to the Reissner sandwich plate theory (Wang, 1995, 1996), where a1, and I1 for single-layer plates
are replaced by the ¯exural rigidity and rotary inertia of sandwich plates, and cF � mch with mc being the
shear modulus of the sandwich core.

8. Positive de®niteness of eigenvalues

This paper only consider linear eigenvalue problems. Therefore, the condition

ÿ1 < N E N cr �46�
is used since N > N cr corresponds to a nonlinear problem, i.e. postbuckling of laminated plates. A
negative value of N implies an initial inplane tension.

Based on Green's formula, it can be proved that an eigenvalue problem of the Dirichlet type contains
a denumerably in®nite sequence of discrete positive eigenvalues corresponding to nontrivial real
eigenfunctions (Courant and Hilbert, 1953). Therefore, the following restraint condition for the
eigenvalue of the membrane vibration should be used throughout this paper
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lM > 0: �47�
In accordance with Schwarz's integral inequality, it can be shown that

a1a3 e a22, I1I3 e I22, �48a,b�
with equality holding if and only if x3 and g(x3) in the integrands involved in eqns (10a) and (7) are
linearly dependent functions, i.e. corresponding to the case of the ®rst-order plate theory. The equality
also holds in the case of the classical plate theory because of g(x3) = 0.

Using the inequalities (47) and (48a), it is easily seen from eqns (27) and (29) that

N cr > 0, DT cr > 0: �49�
Since the results at mechanical buckling and thermal buckling for the ®rst-order theory and the classical
theory can be obtained from eqns (27) and (29) by setting a2�a3�a1, c � cF and a2�a3�0, respectively,
the resulting inequalities (49) are also valid for the two theories. Thus, it has been shown that the
critical hydrostatic loads at buckling and the thermobuckling temperature increments for the three
laminated plate theories are positive de®nite.

For convenience of subsequent analysis, if denoting

c1 � a3lM � c, c2 � a1l
2
M ÿ �Nÿ G�lM � k, �50a,b�

eqns (39) and (40) may be rewritten as

o2
K �

c2
I1lM � I0

, ô2 � c1c2 ÿ a22l
3
M

I0c1
�51a,b�

which are, respectively, the natural frequencies of the classical theory and, in the absence of rotary
inertias, of Reddy's theory.

Using eqn (27), the restraint condition NEN cr given in eqn (46) can be recast as

c1c2 e a22l
3
M: �52�

Particularly, when N = N cr, the equality in (52) holds valid. This leads to vanishing oK and ô as can
be seen from eqn (51), i.e. trivial solutions. The condition N < N cr corresponding to nontrivial solutions
of vibration problems furnishes c1c2 > a22l

3
M, which implies that oK and ô in eqn (51) are positive

de®nite. Note that the expression of eqn (51b) also includes the natural frequencies of the ®rst-order and
the classical theories as special cases in the limits described in the foregoing.

Finally, only the natural frequencies expressed in eqn (30), associated with the Reddy and ®rst-order
laminated theories with inclusion of rotary inertias, remain to be discussed. With the expressions of eqns
(50), the coe�cients A, B and C in eqn (26) may be written in an alternative form

A � ÿI1I3 ÿ I22
�
lM � I0I3,

B � ÿ�I1lM � I0�c1 ÿ I3c2 � 2a2I2l
2
M,

C � c1c2 ÿ a22l
3
M: �53a±c�

As the natural frequencies expressed by eqn (30) are for both Reddy's theory and the ®rst-order
theory, a uni®ed discussion on the coe�cients A, B and C in eqns (53) is given. The case of the ®rst-
order theory can be achieved by taking a2�a3�a1, I2�I3�I1 and c � cF in eqns (53) and (50a).
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With the help of the inequalities (48b) and (52), it is simply seen from eqns (53a, c) that

A > 0, C e 0, �54�
and, from eqn (53b),

B Eÿ 2
�����������������������������������
�I1lM � I0�I3c1c2

p
� 2a2I2l

2
M < 0: �55�

Moreover, with the aid of the inequality (55), the discriminant of eqn (30) gives

B2 ÿ 4AC e 4

� �����������������������������������
�I1lM � I0�I3c1c2

p
ÿ a2I2l

2
M

�2
ÿ4�ÿI1I3 ÿ I22

�
lM � I0I3

��
c1c2 ÿ a22l

3
M

�
� 4lM

h ���������������������������
�I1lM � I0�I3

p
a2lM ÿ I2

���������
c1c2
p i2

e 0: �56�

On the basis of the inequalities (54)±(56), it is concluded that o2 shown in eqn (30) has two positive
roots with the only exception where C � 0: In the case of C � 0, i.e. N � N cr, eqn (30) gives two roots
o2 � 0, ÿ B/A. The vanishing frequency is the lower one and hence related dominantly to the transverse
¯exural mode of a laminated plate rather than the rotational mode, corresponding to a trivial solution
to the more interested eigenvalue problem of ¯exural vibrating plates. For N< N cr, however, both of
the natural frequencies shown in eqn (30) are positive de®nite.

It should be noted that for an arbitrarily given positive value of o2, conversely, the characteristic eqn
(16) might not identically provide a positive eigenvalue l: Therefore, while expressing lM in terms of o2

from eqn (16) or (25), the positive de®niteness condition shown in the inequality (47) places a restriction
on the range of o2:

9. Conclusions

Based on the rigorous analysis presented in this paper, exact eigenvalue correspondences between
Reddy's third-order theory, the ®rst-order theory and the classical Kirchho� theory are established
through the membrane vibration frequency. These exact explicit relationships are valid for symmetrically
laminated polygonal plates with transversely isotropic laminae and simply supported rectilinear edges,
under a hydrostatic inplane force and resting on a Winkler±Pasternak elastic foundation. Once an
eigenvalue is given, the eigenvalues for any other problems can be obtained through the connections
readily established in the paper. Some available analogies concerning single-layer and sandwich plates
are special cases of the present results. Positive de®niteness of the critical hydrostatic pressures, the
thermobuckling temperature increments and the natural vibration frequencies is proved for the third-
order, ®rst-order and classical laminated plate theories, subject to the condition that the inplane load is
either tension or compression less than the critical buckling hydrostatic pressure, i.e. prior to occurrence
of buckling.
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